UFBA » Instituto de Matemática »

Differential invariants of generic parabolic Monge–Ampère equations

Some new results on the geometry of classical parabolic Monge–Ampère equations (PMAs) are presented. PMAs are either integrable, or non-integrable according to the integrability of its characteristic distribution. All integrable PMAs are locally equivalent to the equation uxx = 0. We study non-integrable PMAs by associating with each of them a one-dimensional distribution on the corresponding first-order jet manifold, called the directing distribution. According to some property of this distribution, non-integrable PMAs are subdivided into three classes, one generic and two special. Generic PMAs are completely characterized by their directing distributions, and we study canonical models of the latter, projective curve bundles (PCB). A PCB is a one-dimensional sub-bundle of the projectivized cotangent bundle of a four-dimensional manifold. Differential invariants of projective curves composing such a bundle are used to construct a series of contact differential invariants for corresponding PMAs. These give a solution of the equivalence problem for generic PMAs with respect to contact transformations. The introduced invariants measure the nonlinearity of PMAs in an exact manner.

Grupo de Pesquisa: 
Linhas de pesquisa: 
Outros autores: 
Alexandre M. Vinogradov